Motion Guided Spatial Attention for Video Captioning
نویسندگان
چکیده
منابع مشابه
Text-Guided Attention Model for Image Captioning
Visual attention plays an important role to understand images and demonstrates its effectiveness in generating natural language descriptions of images. On the other hand, recent studies show that language associated with an image can steer visual attention in the scene during our cognitive process. Inspired by this, we introduce a text-guided attention model for image captioning, which learns t...
متن کاملVideo Captioning with Multi-Faceted Attention
Recently, video captioning has been attracting an increasing amount of interest, due to its potential for improving accessibility and information retrieval. While existing methods rely on different kinds of visual features and model structures, they do not fully exploit relevant semantic information. We present an extensible approach to jointly leverage several sorts of visual features and sema...
متن کاملSpatio-Temporal Attention Models for Grounded Video Captioning
Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that relies on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video da...
متن کاملHierarchical LSTM with Adjusted Temporal Attention for Video Captioning
Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., ”gun” and ”shooting”) and non-visual words (e.g. ”the”, ”a”). However, these non-visual words can be easily predicted using natural language model without considering visual...
متن کاملReconstruction Network for Video Captioning
In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33018191